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Abstract A substantial literature on switches in linear regression functions considers situations in
which the regression function is discontinuous at an unknown value of the regressor, Xt., where k
is the so-called unknown "change point". The regression model is thus a two-phase composite of

Solutions
to this single series problem are considerably more complex when we consider a wrinkle frequently
encountered in evaluation studies of system interventions in that a system typically comprises
multiple members (j = 1, 2, ... , m) and that members of the system cannot all be expected to
change synchronously. For example, schools differ not only in whether a program, implemented
systemwide, improves their students' test scores but, depending on the resources already in place,
schools may also differ in when they start to show effects of the program. If ignored, heterogeneity
among schools in when the program takes initial effect undermines any program evaluation that
assumes that change points are known and that they are the same for all schools. To better describe
individual behavior within a system, and using a sample of longitudinal test scores from a large
urban school system, we consider hierarchical Bayes estimation of a multilevel linear regression
model in which each individual regression slope of test score on time switches at some unknown
point in time, ki. Preliminary evidence suggests that change points in test score trends indeed
differ from school to school in a sample of urban elementary schools. Furthermore, the estimated
posterior distribution of the change points suggests that, while the estimated timings of change in
performance do not contradict the claim that a well-publicized intervention at time t may have been
a contributive factor, changes have not been uniformly positive and require further scrutiny. We
explore additional results employing models that accommodate case weights and shorter time-series.

Keywords Change and Join point; Hierarchical Bayes; Markov chain Monte Carlo; Multilevel
modeling; Longitudinal data; Program evaluation; Piecewise regression; School performance
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t = k t k k; time

Figure 1: Comparing post- and pre-intervention regression slopes when (a) change for a school
occurs at a known time point k which is coincident with the time of intervention t, (b) change
point k is neither known nor coincident with t (c) schools change asynchronously and their change
points are unknown.

1 Introduction

To evaluate the effect of a program on a certain relevant measure of school performance, the educa-

tional researcher could compare the school's performance after the intervention with its performance
before. Frequently, the researcher compares the post-intervention mean on a standardized test with

its pre-intervention mean. A better gauge of the program effects on performance can be obtained,
if repeated measurements are available, by comparing the post-intervention and pre-intervention
trends in a piece-wise regression of performance measure on time. This practice however assumes
that the time of intervention, t, coincides with the point in time, k, at which the program takes
initial effect. Although a clear improvement, the analysis may be misleading if the change point,
k, is in fact unknown and different from t.

Figure 1 illustrates what can go wrong with the usual piece-wise regression for this situation
if the assumption that change in school is coincident with the intervention point is mistaken.
Suppose we denote the pre-intervention and post-intervention slopes as 14.t) and ,C3t), respectively,

if we assume that change occured at time t, and let ,31`) and 13Yc) denote the pre- and post-
intervention slopes, respectively, if change had occurred at k. Panel (a) depicts the situation in
which an intervention at time t is coincident with when change starts, k. An evaluation based on
this assumption correctly estimates the change in slope, as (13t) oit)) (13k)

) This same

analysis would however underestimate the effect if change actually begins at k > t, as depicted
Ak) 0.k)) (i3t) oit)..by the dashed lines in panel (b), because we suspect that ) Panel (c)

suggests considerably greater confusion for a routine multi-site evaluation when change points, ki,
varies with site (such as schools, indexed by j) and are asynchronous with the time of intervention,

t.

The literature on switching linear regression functions considers typical situations in which the

2
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regression function is discontinuous at an unknown value of the regressor, Xk, where k is the change

point. The regression model is thus the two-phase composite

Yi N(/3op 01pxj, o-p2) (1)

wherei=1,2,...,n,p=lifi<kandp= 2 ifi> k.

Following Quandt (1958), similar attempts to reflect the uncertainty in change points in two-
phase linear regression analysis have since appeared. The literature for two-phase regression is
enormous, but a brief overview may be organized along three related themes. The first reveals a
shared concern across various empirical research domains in identifying and detecting change in the

course of developmental processes. Many applications are found in econometrics. Brown, Durbin
and Evans (1975) provide instances involving changes over time in the number of local telephone
calls, in the demand for money, and in staff requirements in an organization. In climatology,

Maronna and Yohai (1978) examine annual precipitation over time for change. In geology, Esterby
and Shaarawi (1981) employ a two-phase polynomial to describe change in measures of pollen
concentration in lake sediment cores obtained at various depths. Morrell et al. (1995), Slate and
Cronin (1997), and Slate and Clark (in press) presented nonlinear regression models with transistion
smoothing functions at the unknown change point to monitor changes in prostate-specific antigen
(PSA) profiles as a means for early prostate cancer detection. In epidemiology, Joseph et al. (1996)
are concerned that a pre-post comparison may be biased if the intervention point is mistake for
the change point in their study on the effects of dietary calcium supplementation on high blood
pressure.

A second theme in the research literature dwells on variants of Quandt's original formulation
of the switching regression function, Equation (1), itself: whether the regression segments share a
common intercept (a join point problem, e.g., Bacon and Watts, 1971), share a common slope but

display a shift in their means (a mean shift problem, e.g., Hinkley and Schechtman, 1987), and
share the same residual error variance (e.g., Worsley, 1983). Picard (1985) provide a more general
consideration of unknown change points in time series analyses. Finally, the literature may also be
organized along more methodological lines, with authors employing maximum likelihood solutions

(e.g., Jandhyala and Fotopoupos, 1999), Bayesian methods (e.g., El-Sayyad, 1975), random regres-

sion mixtures (e.g., Quandt and Ramsey, 1978), as well as nonparametric approaches (e.g., Wolfe

and Schechtman, 1984). The interested reader is directed to the comprehensive reviews of Hinkley
et al. (1980) and Zacks (1983). More recent efforts, laced with a stronger Bayesian flavor, extend
beyond the two-phase normal linear regression to other developmental processes. Muller and Ros-
ner (1994) study triphasic linear models using a semiparametric Bayesian approach. Raftery and
Akman (1986) and Carlin, Gelfand and Smith (1994) formulate Bayesian procedures for changes
in Poisson processes for count data, while Stephens (1994), Slate and Cronin (1997), and also Chib
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Figure 2: Distributions of School Grade 3 ITBS Math Means

(1998) considered problems with more than one change point.

The solution to Quandt's single series problem, Equation (1), is considerably more complex
when we consider a wrinkle frequently encountered in evaluation studies of system interventions in
that a system typically comprises multiple members (j = 1,2, ... , m) and that, furthermore, mem-
bers of the system cannot all be expected to behave similarly, or otherwise change synchronously.

For a commonplace example in educational research, consider the putative effects of a large-scale

intervention on student academic performance. Figure 2 shows the variability of school means for
third grade Iowa Tests of Basic Skills (ITBS) mathematics scores for a sample from Chicago Public

Schools from 1988 to 1996. (Years are labelled 1 through 9 in the sequel.) For this analysis, we have

placed the criterion referenced test scores on an arbitrary linear scale. Displaying a series of box-
plots for school test score means over time invites inappropriate analyses which assume that school
change is synchronous. The evidence suggests that schools vary in their patterns of change, a fact
better represented by a plot of raw school test score profiles, as in Figure 3. Here, according to one
interpretation, schools appear to differ not only in whether a program, implemented systemwide,
improves their students' test scores but, depending on the resources already in place, schools may
also differ in when they start to experience effects of the program. If ignored, heterogeneity among
schools in when the program "kicks in" individually undermines any program evaluation that
assumes that change points are known and that they are the same for all schools. It important to
recognize that an explanation of school reform in terms of the changes in test scores is not the goal

of the analyses. Any direct relation would certainly be naive given that many other unspecified
causal mechanisms may also be at play in this context. Nevertheless, the issues considered here are

4
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theoretically instructive because how we determine the timing of change is critical to evaluation

efforts for understanding what works in schools.

We consider a fully parametric hierarchical Bayesian estimation of a multilevel linear regression

model in which each individual regression slope of test score on time changes at some unknown

change point, Xk3 unique to each school, j. Our approach and rationale closely resembles Joseph

et al.'s (1996) multipath change point analysis. They consider randomized trials in which the blood

pressure of individuals under the same experimental conditions are not expected to respond to
dietary calcium supplementation in the same way, nor within the same time frame. They suggest

that a sound analysis must also account for the mediating effects of individual metabolism, as may

be evidenced by variation in individual times to response to treatment. However, we extend their

mean-change model by (1) estimating join point regression models for each individual school and,

because the number of time points is relatively small and the within school variability appears

considerable, we also (2) reformulate the school level model with t-errors at the school level. Also

because we expect that the uncertainty of a join point estimate is considerable the shorter the time

series, we also showed how inferences on school change itself can be easily constructed from the the

conditional posterior of the change in slopes, (02j /31j Al, ;), where icj is the modal estimator of

the join point k, for example.

Our basic model is also similar to another recent study by Slate and Clark (in press) which traces

the change in a biomarker to give an early detection for prostate cancer for individual patients.

In their application join points vary among units, but are assumes to be continuous rather than

discrete. Both of the studies above share the major goals of our general modeling framework, which

is to better reflect individual differences in development within a system when the timing of change
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is unknown.

Our study contributes to the literature on change point analysis for studying a bundled system
of change processes. In the context of programmed interventions in school systems, the analysis
brings to program evaluation an increased measure of sensitivity. It could, for example, help us
answer the question of whether the overall improvement in performance could have resulted from
a well-publicized intervention, given that improvement for some schools begin later than projected.

Additionally, this model is easily extended to accommodate school and community characteristics
as covariates at the school level, an analytic strategy that could help identify and explain a school's

delay in showing the anticipated effects of an intervention.

In Section 2, we provide an overview of Quandt's change point model, and describe the features

of the hierarchical Bayes formulation due to Carlin et al. (1992). Section 3 details extensions to
the multilevel change point regression assuming normally distributed errors. Section 4 documents
an analysis using data from an ongoing study conducted by the Consortium on Chicago School
Research, Chicago, Illinois. In Section 5, we extend our basic approach with illustrative analyses
incorporating case-weights. With another extension, we further evaluated our results for sensitivity
to outlying observations through the use of t distributed errors. We conclude in Section 6 with
preliminary evidence that change points for individual school grade three ITBS mathematics pro-
files (from 1988-1996) indeed differ among a sample of urban elementary schools. The estimated
posterior distribution of the change points suggests that, while the estimated timings of change
in grade three mathematics performance do not contradict the claim that school reform may have
been a contributive factor, changes have however not been uniformly positive.

2 Single Series Solutions

Suppose we observe multiple test performance profiles for a sample of schools in a system. A single

series change point solution would model each series separately.

2.1 Maximum Likelihood

For Equation (1), Quandt (1958) shows that the log likelihood for fixed k is proportional to

k log "6-1 (n k) log -6-2.

That k is not continuous suggest that we take the maximum likelihood estimate of k to be the
value of k that corresponds to the maximum maximorum. The likelihood ratio test against the null
hypothesis

N(130 + o1xi,a2)

6
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is maxk e(k). Here,
gk) = n log er2 k log aq (n k)log173,

k = 3,4, ...,n 3, and a p2 and '&2 are the maximum likelihood estimates of o-p2 and a2, respectively.

Further details of this model and its subsequent development, including tests of a related model

that assumes equal variances, are given by Worsley (1983).

2.2 Hierarchical Bayes

Carlin et al. (1992) pose Equation (1) above as the first in a three-stage hierarchical Bayes linear

regression model. At the second stage of this model )31 = (13017 1311)1 and 02

independent N(- y, T) where T is 4 x 4. oi and oi are independent IG(ao,b0). A disc( ri3e0t9e13u1n2i)foramr e,

Uri, represents our prior knowledge of the unknown change point k. Stage three hyperpriors in this

model for (-y, T) are normal-Wishart; -y N(p, C), and T Inv W(S-1,p).

The intermediate objective for the Gibbs solution is to derive the marginal posterior of k. Stan-

dard results from the multivariate normal show that the conditional posterior for each regression

segment is,

Xt. =

Op N (V pkbpk ,V pk) ,

vk 2x.klxk lx -1
P P

bk (0.-2)(vk/k T-
P P PJP 17) ,

= (Y1,- - ,Yk)1 , Y12 = (Yk+i, Yn)i

)
Xk

and )q =
Xlc+1

1 1 1

xn

Furthermore, the full conditional distributions of the unknowns (a-f,q,,, T, k) can be given as:

2al

(ao + (ylic x'1131)' (3,1 + bo}),

2
a2

IG
(ao + {1 X02)/ (Y/2` Y3X/2) + bo}) ,

-y N ([14T-1((31+ 02) + C-1111, A)

T inv W ({Ep(f3p -y)(3p -y)' + S1-11, p + .

A, the variance-covariance matrix of the full conditional distribution for -y, is (2T-1 + C-1)-1.

7
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The full conditional distribution for the join point, k, is in turn

p(kly 132, cii,

1(y; k 132, 4)1 u gy; ko31,02,0i,a3)

where the likelihood is

14; lc, 01,02, old) =
r 1 k k k k 2 } / k n-k

exP (yp
xPOT))

YP x OP) /CrP Grl Cr2

2.3 Single Data Series Example

Before we proceed with the case of multiple time series, we compare results for the single series
formulations above for a simulated data series with the evaluation of change based on piecewise
regression. Without loss of generality, we would work with a join point regression model (Cohen
and Kushary, 1994) denoted as follows:

Yi N(Oo + min(0, xi Xk) + 02 max(0, xi xic), (72)

If 2 < k < (n 1) for example, the predictor matrix Xk is

1 X1Xk 0

1 Xk-1 Xk 0

xk = 1 0 0

1 0 Xk+1 Xk

\ 1 0 Xn Xk

(2)

We argue that, for shorter time series with no dramatic level change expected, a model such as
Equation (2) with constant error variance for which only the slope changes after a join point
appears realistic. The first coefficient, 130, is the expected value of the outcome variable at the join

point, k. 13]. represents the regression slope before and up until the join point, and 02 is the slope
thereafter. Other alternative codings for Xk are of course possible, including a parameterization
which estimates directly the difference, 01), representing a change in slopes. For our illustraton,
we generated the series

yi = (3.98, 3.38, 3.41, 3.33, 2.75, 3.10, 3.19, 2.96, 3.03, 2.94)

8
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Table 1: OLS Piecewise Regression Results for Simulated Data Series.
Model 4o 41 42 (42 41) R2

No Change 3.249 -.085 .561
(.078) (.027)

Change at k
3 3.219 -.336 -.040 .296 .742

(.123) (.115) (.030) (.133)
4 3.104 -.248 * -.022 .226 .752

(.121) (.073) (.035) (.097)
5 2.980 -.213 .009 .222 .800

(.109) (.048) (.038) (.077)
6 2.956 * -.158 .014 .172 .704

(.132) (.046) (.059) (.093)
(Prob >1 t 1) < 0.05.

Table 2: Some features of the marginal and conditional posterior distributions for simulated data
series.

Parameter Mean Std. 25% Median 95%
Features of the Marginal Posteriors

00 3.100 0.210 2.713 3.085 3.499

01 -0.304 0.221 -0.901 -0.240 -0.045
02 -0.016 0.099 -0.148 -0.023 0.160

(02 01) 0.287 0.236 -0.102 0.250 0.872
a 0.219 0.077 0.123 0.203 0.412

4.365 1.849 2 4 9

Posterior Features Conditional on Join Point Mode, k = 5
0o 2.982 0.130 2.729 2.982 3.240

01 -0.213 0.057 -0.327 -0.214 -0.099

02 0.008 0.045 -0.083 0.008 0.094

(02 01) 0.221 0.092 0.038 0.222 0.400
0.195 0.061 0.115 0.185 0.339

for i = 1, 2, , 10 based on model (2) above, setting the join point at n = 10, k = 5, 00 = 3.0,

i3i = -.2, (02 = .2, and a = .15.
Results for ordinary least squares regression in Table 1 show that, not surprisingly, the model is

misspecified if we are mistaken about when change actually occurred. If we are wrong about when
change actually occurred, we fail to detect a positive change in regression slopes. The maximum
likelihood solution correctly identifies k = 5 for this series, with regression estimates ijo = 2.981,

= -.213, and i32 = 0.009. Table 2 gives the solution, based on 10,000 updates, for the Carlin et

al.'s hierarchical Bayes approach, employing the discrete prior,

= (.0, .05, .14,14,14,14, .14, .13, .12, .0) ,

for the unknown change point.
The point estimates in Table 2 are of limited use for inference however because they average

9
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Figure 4: Marginal Posterior Distribution of Join Point for Simulated Data Series

over a change point distribution in U. A critical feature for the Gibbs solution, indeed a significant
advantage, is the ability to closely examine the marginal posterior distribution of k, in Figure 4, for
symmetry and multi-modality. Figure 4 suggests that the mode, at k = 5, probably summarizes
the marginal distribution more adequately, in agreement with our previous solution via maximum
likelihood. The conditional posterior means for the regression function given k = 5 are provided
in the lower portion of Table 2. These conditional results are comparable to the previous ordinary
least squares and maximum likelihood solutions for change occuring at time point 5, with a 0.988

probability that the change in slopes is positive, i.e. p(132 > 1311 k = 5).

3 Multilevel Regression with Random join points

If the essential features of each data series are considered exchangeable, the researcher will also
be interested in characterizing parameters of the population. We derive our multilevel regression
model with random change point guided by earlier results from Carlin et al. (1992) and Joseph et

al. (1996).

3.1 The Model

For a sample of schools, the multilevel formulation for model (2) assumes 133 = (003,,_313,23)' are

independent N(-y, T) and C2 is distributed IG(a,b). Hyperpriors in this model for (-y, T-1) take
the normal-Wishart form as before. The discrete uniform, U(rri, 7r2 , 772), represents our prior

knowledge of the unknown join point ki , and 7r' is distributed as a Dirichlet(ai , a2, , an). Results

10
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resemble closely those of Carlin et al. (1992). The conditional posterior of f33 is

N (VIP b .1; V 3k )

where
Vki = (u2X7'Xki + T-1)-1

3 3 3

bkj (:7_23c12Iyk3
3 3 3 .7)

3.2 Implementing the Gibbs Sampler

From the above specification, the joint distribution of the data and all parameters is proportional

to

I-y, T) P(.71/..., c)

p(TIS, p) p(o-21a,b) p(k_7171-) p(71-1 a) .

To implement the Gibbs sampler, we require the full conditional distributions for (a2,-y,T,7r):

cr2 IG (m(a + + 1) 1,

ET (4-1 X 31!.' 3 j)' (y17 X412 j) + bm}) ,

-y N (A{T-1Ei [3 + C-1/1}, A) ,

T mriv W ({Er(13 7)(0 )+ S}-1,p + .

A, the variance of the full conditional distribution for -y, is (mT-1 + C-1)-1. The conditional
distribution for the join point, kj, is in turn

p(ki = ily 0.2) gyi;kj,i3j,0-2)
L(yi; ki 0-2) irj

where the likelihood is

L(3,J; ki,13i, 0-2) =
kki Q ,,kj 3eif3 .) /20-2} 10:nexp {- (yji Ar (

3 3

The discrete uniform prior for join point, k , may be represented as

p(kiiir) = 7rfi(ki),F.T2(ki)
2 7rn 7

11
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by using the indicator function
{1 if ki =
0 otherwise.

The Dirichlet (a') hyperprior, the conjugate prior for the probabilities (DeGroot, 1970), is

«,P(rla) TT

Conditional on (ki, a), 7r is distributed

13(7rlk, a) cx rI7 7roli i(ki)71-9`i -1)

= 7ri

/i(kj)
7Ti

m(ai-1)+E7rrn 3
I i 7ri

which is Dirichlet (m(ai, 1) + Er , so that the full conditional for ITI is

OIT exp {E x3k;i3j)' x3k; 03) /2a2}
C

m(ai -1)-FE7 Ii(ki)
X fr 7ri

Estimation of the parameters of interest requires iterative Monte Carlo integration. Following
Gelfand and Smith (1990), we perform the integration using Markovian updating via the Gibbs
sampler.

4 Academic Outcomes and School Reform

Recent research on the academic productivity of Chicago's public elementary schools concludes that
there is systemwide improvement in grade three mathematics learning, as measured with the ITBS,

from 1987 through 1996 (Bryk et al., 1998). Bryk et al.'s three-level hierarchical linear regression
models an individual student's input to the grade and the gain he makes in that school. That is,
the first stage student-level model employs both the student's grade three test score (output from
grade three) as well as his grade two test score (input to grade three), along with their individual
standard errors of measurement. Data are longitudinal within the school. Presuming growth is
linear throughout, trends for input and for gain over time are estimated for each school. These
arowth factors are then allowed to vary across schools in the systeml.

A natural follow-up question, in a politically sensitive school reform environment, is whether

1The interested reader should also consult the original article for information on various adjustments made for
student and school-grade demographic composition, as well as for a suspected test form effect.
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the observed improvement the result of school reform. Specifically, do the gains occur within some
reasonable time frame after the Chicago School Reform Act of 1988? Although suggestive of a
positive school reform effect to the advocate, this is not a question the original analysis is set up to
answer and none is ventured. First, if reform has an effect it is believed not to be appreciable until
at least 1990. The value of t for 1990 under model (2) is 3, which is two years after the legislation
has passed, when it is argued school resources and reorganization are finally in place for most
schools in the system. This phenomenon cannot be captured by linear growth parameterization
with a unitary slope used in Bryk et al.'s stage two model. Instead, a two-phase regression on
time with the break-point at 1990 would be necessary, a strategy that nevertheless also depends
on the unstated assumption of synchronous change, occuring in 1990. This assumption appears
unlikely from Figure 3. We attempt to give a tentative answer to this question, showing how
we may evaluate the impact of systemwide school reform using our multilevel join point analysis,
Equation (2), using a representative subset of the schools (m = 58). If the reform is causal of
positive changes in academic performance, we expect to see school test score trends change for
the better after 1990. In the present analysis, student gains are not the focus however. We use
only school means calculated from students who have been in a same school for two consecutive
assessments. For simplicity, analyses involving student and school covariates will be considered
elsewhere.

4.1 Model Hyperpriors

We employed the following conjugate hyperpriors in our multilevel Bayesian join point regression

analysis:

pi = (0 , 0 ,

S =

a = 0

0) C =

(
.5 0

0 .25

0 0

b =

1 104

\

0 \
0

.5 /

1000,

0

0 104

0 0

0

0 ,

104

cx/ (1 1 1 1 1 1 1 1)
9, 97 9,9, s; 9, 9, 97 gi

Lacking additional prior information, we did not constrained k; away from each ends of the time
period. In our analyses however, we also experimented with alternative noninformative priors, espe-
cially with the Dirichlet (a') because they are the principal objects of our inference. In general, we
observe substantial differences in convergence rates but reasonably comparable marginal estimates.
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Figure 5: Marginal Posterior Distribution of the Probability of Join Point at k.

All calculations are obtained using the Gibbs sampler implemented in BUGS (Spiegelhalter et al.,
1995). Diagnostics suggest that the solution, based on updates totaling 30,000, converged.

4.2 Results

Table 3 summarizes results from the multilevel join point analysis. Figure 5, in particular, plots
the marginal posteriors for 7,, and shows that only for i = k = 3 is there density appreciably
higher than the equally likely prior probability of 4. Thus, pooling information across schools in
the multilevel analysis, also an attractive feature for Joseph at al., suggests that most of the school

regressions switched at ki = 3, that is, in 1990, which may be good evidence for attributing school
improvement to school reform (lacking other competing explanations of course).

If we fix the join point for a school at the modal value of join point, we obtain the fitted
piecewise school trends in Figure 6. We base our inference on the growth factors for the school on
the posterior distributions of 00j, 131j, and 02j conditional on the modal estimate of kj because,
although it does not reflect completely the uncertainty in ki, its determination is based not just on
the data for a school but from a pooling of information from schools in the population. Employing
the marginal posterior distributions in this case will over-emphasize the uncertainty in determining

ki; but that may sometimes appear preferable (see Joseph et al., 1996).
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Table 3: Multilevel join point solution: Marginal posterior features.
Hyper-

parameters Mean Std. 25% Median 95%

Regression Parameters
70 39.000 1.347 36.370 38.990 41.650

ryi 0.174 0.255 -0.335 0.173 0.673

72 0.127 0.213 -0.310 0.130 0.540
Variance Components of Regression Parameters

Til 90.120 18.860 59.890 87.870 133.500

712 7.743 3.037 2.599 7.441 14.620

T13 -2.872 1.661 -6.526 -2.743 0.034

T22 1.186 0.525 0.466 1.087 2.481

T23 -0.258 0.204 -0.719 -0.241 0.092

T33 0.465 0.187 0.203 0.432 0.918
Error Variance

a 2 3.299 0.120 3.074 3.295 3.542
Posterior Probability at Join Points

71 0.092 0.082 0.002 0.068 0.304

7r2 0.089 0.082 0.002 0.065 0.304
73 0.194 0.125 0.015 0.176 0.478

74 0.129 0.111 0.004 0.099 0.414
75 0.105 0.093 0.003 0.078 0.344

71-6 0.095 0.085 0.003 0.071 0.316
77 0.106 0.094 0.003 0.080 0.346
7r8 0.096 0.089 0.003 0.070 0.327
79 0.093 0.083 0.003 0.070 0.308

2 4

Year

6 8

Figure 6: Estimated School Trends for Modal ki
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Table 4: Mean estimates of school regressions conditional on modal join point. Symbols for p(02.7 >
)313) I ic3) in last column signify modal join points.

School 13o; 42; p(132; 01..i)
.8-.9-.5

17 78.666 3.865 -1.435 3

45 65.152 2.175 -0.708 3

14 56.953 1.939 -0.393 6

51 50.766 1.521 -0.268 4
20 52.975 1.243 -0.378 3:

10 46.223 0.716 -0.905 3:

33 52.104 1.549 0.207
57 46.072 1.071 -0.109
1 41.012 0.887 -0.275

30 41.376 0.605 -0.369
43 45.795 0.935 -0.036
53 45.509 0.689 -0.024
11 45.838 0.847 0.202
48 45.866 0.886 0.308
56 41.888 0.402 -0.062
34 42.558 0.367 -0.028
41 46.268 0.541 0.224 3
16 38.680 0.168 -0.055 3
32 35.788 -0.140 -0.297
55 41.020 0.089 -0.036 3

37 36.850 -0.116 -0.234 3

3 39.906 -0.081 -0.085 3
39 38.572 -0.128 -0.016 :3
40 42.617 0.275 0.412 3

44 29.855 -0.274 -0.120
21 33.195 -0.157 0.124
28 38.538 0.176 0.462
29 37.180 -0.363 -0.077 3
24 36.254 -0.038 0.300 3

46 35.307 0.034 0.421 3
23 34.838 -0.352 0.130
12 36.241 0.053 0.538 3
15 37.699 -0.038 0.468
35 35.571 -0.002 0.592
4 34.203 -0.360 0.301

27 32.034 -0.493 0.199
22 29.421 -0.657 0.047
36 37.090 0.020 0.730
2 30.652 -0.618 0.112

49 32.978 -0.150 0.592 3
19 35.670 -0.010 0.840
7 30.260 -0.719 0.207
5 37.719 -0.003 0.937
18 30.339 -0.895 0.143 3
8 32.165 -0.636 0.403 3:.

31 28.169 -0.922 0.126
6 30.248 -0.511 0.646 3.

42 33.455 -0.463 0.701 3.
47 29.666 -0.704 0.553 3.
50 30.353 -0.441 0.923 .3.:
25 30.462 -1.208 0.225 .4
13 23.052 -0.979 0.638 7

54 31.185 -1.592 0.151 5
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Figure 7: (a) Scatterplot of Posterior Means under Multilevel Analysis: Change in Slopes, (02j i31j)
vs Slope before change, [31j, with size of symbol proportional to poin point 00j. (b) Posterior
distribution of estimated join points for some alternative multilevel join point models.

Our results further indicate that schools have not uniformly improved. Table 4 shows the means

of conditional posterior distributions of the regression functions for each school for the subset of
schools with change occuring away from each extreme of the time span. The largest slope gain is
(.151-(-1.592))=1.643 score units per year, showing a productivity gain of some 1.643 x 3 5 score

points from 1993 through 1996 (School 54). About 14 schools improve with change coming at the

heels of reform in 1990 or shortly thereafter, for p(132j > thj) 1,,:j) greater than .80. After 1990

changes in their slopes are positive, of at least 1.1 score units per year each. This analysis also
suggests that an almost equal number of schools show declines after 1990, with slope changes of at

least -1.0 and with probability greater than 0.8.

Figure 7(a) shows a scatterplot of the posterior means of change in slopes, (09j thj), versus

the slopes before the detected join point, Size of plot symbol varies proportionally with
the expected attainment level, 00j, at the join point. The analysis shows that schools that have
performed relatively well, e.g., schools with higher estimated join points such as School 17 and
School 45, generally take a turn for the worse. On the other hand, among poorly performing schools
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(e.g., School 54), changes in slopes are on the whole positive. Based on some initial analyses to
be considered elsewhere, we suspect that the strongly negative correlation between the growth rate
prior to change and the change in growth rates afterwards is quite typical of piecewise models for
developmental processes over the shorter timeframe.

5 Alternative Models

Two characteristics of our application deserves further attention: (1) the school means we have
employed are measured with varying precision and (2) trend estimates for shorter time series data
can be especially sensitive to influential or outlying observations. Each factor presents a potential
danger to a routine regression analysis. However, they also provide a good opportunity to present
simple extensions to our basic approach.

5.1 Case Weighting

Recall that our data comprise annual summaries in the form of grade-level test score means. Because

schools not only differ from one another in the number of third grade classes they offer, the number of

third grade classrooms within a school may also vary over time. At the same time, enrollment often
fluctuate from year-to-year within a classroom. The result is that school-grade means are typically
measured with varying degrees of precision. Under these circumstances, we can strengthened our
previous exploratory study of our school test score data considerably by weighting the means we
have for each year in each school by the number of observations,nii, on which the means are based.

The weighted analysis begins with Equation (2). We simply multiply the i-th row of [yj X13] by
and proceed with the previously outlined Gibbs sampler in Section 3.2.

5.2 Shorter Time Series

As far as trend estimation is concerned, nine observations might be considered barely adequate
with noisy data although many studies in the social sciences have touted results based on trend
estimates with as few as three or four repeated observations2. We explore a minor extension to our
multilevel random join point model above for our data by replacing the assumption of normally
distributed errors with a heavy-tailed density such as the t-distribution. With degrees of freedom
A set smallish, at about 4, the t robustifies inferences against moderate misspecfication of the
distributional assumption when the sample size is small (e.g., Lange, Little and Taylor, 1989).

Briefly, we now suppose that the independently and identically distributed normal errors for
model (2) are weighted by tujj, so that observations with smaller weights are downweighted. Given

2Like many similar studies of school performance currently underway, more and more information about students,
their parents, teachers and schools are routinely added over time to this database to give a more complete portrayal
of student development.

18

0 0



(and )3j, (72), yij is distributed normal with variance (o-2/wij). Additionally, wij is assumed to

be distributed gamma, or wij xl/A. The results given in Section 3.2 hold for a revised Gibbs

sampler, and are augmented by the full conditional for the weights

G ((A + 1)/2, 2 {(yij 40.02/0-2 A}') .

Because the expected value of the individual weight wij is inversely proportional to the square
of a standardized residual, data more distant from the predicted will count less for a specified

degree of freedom. This weighting is amplified as we reduce A. Seltzer, Novak, and Lim (under

review) explored this strategy in an intervention study in order to accommodate some unusually
low achieveing students nested in remedial reading classrooms3.

5.3 Further Results

We now present results from weighting school-level regressions with (1) information about the
precision of the school mean from its sample size, (2) t's with 4 and 11 degrees of freedom to
evaluate the importance of outlying data points, and (3) their combination case weighting of

t-distributed observations at the school-level. With reasonable adjustments to the hyperpriors

previously employed in the unweighted analysis, all modifications to the Gibbs sampling procedure

detailed in Section 3.2 produced convergence after 30,000 updates.
Marginal posterior distributions of join points for school-level regressions employing t's with 4

and 11 degrees of freedom is shown in Figure 7(b), and a normal-normal model employing case
weights. Further details are omitted for brevity. Results suggest overall agreement between the
normal-normal and the t11-normal model, not unexpected because a t11 density approaches the
normal, identifying k = 3 as the join point when change occurred for almost 19% of the schools in

the system. A model using t4 errors however suggests that closer to 20% of the schools changed

but at k = 4, a year later. When analyzing our data with case weights using the normal-normal
model, a join point for the system change is less distinctive.

We compare the relative fits to the data of the alternative models using naive Bayes factor
computations via Schwarz's criterion (Ka.ss and Raftery, 1995)4. For the unweighted data, the

model with t4 errors produced a better fit than either the normal-normal model or the model with
t11 errors. For the weighted data, the normal-normal model fit the data better than the t4-normal,

and even better than the t11-normal. This suggests that the relative instability of the within school
piece-wise regression due to a small number of time-points in the series can be mitigated with

enough data for each time-point.

3We may also allow A to vary by employing an adaptive t error distribution, which will render our inferences
independent of our choice of a particular A value.

4The reader is warned that this makes only for a rough comparison because the accuracy of the Schwarz's criterion
is unknown for heavy-tailed distributions.
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Figure 8: Observed, fitted values with modal join point estimates based on alternative join-point
models for selected schools.

Figure 8 shows the fits of various models for four selected schools. Plotted against the horizontal

axis are the locations of the posterior mode of individual join point for (1) (unilevel) maximum
likelihood, (2) Carlin et al. (unilevel) hierarchical Bayes, (3) normal-normal multilevel join point,
(4) weighted normal-normal multilevel join point, (5) t4-normal multilevel join point, and (6) tij-
normal multilevel join point solution. Overlaying the observed data are fitted curves from the
normal-normal, the weighted normal-normal, and the t4-normal models. While solutions are typ-
ically consistent across models, the fits to data for School 11 above may be suspect if one were
to focus on this school on its own. This is likely the result of excessive shrinkage, as suggested
by a more reasonable fit from a separate hierarchial Bayes solution for each school. The effect of
shrinkage is potentially a serious concern for interpretation. A more thorough analysis needs to
identify all such schools for further investigation.
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6 Conclusion

When the onset of a medical condition is not directly observed, detecting a change in a marker for

the condition may provide a basis for inferring the time of onset, leading to a better description

of the condition. Evaluating the effect of an intervention, as in our evaluation of a systemwide

reform on school academic performance, often depends on a judgement of when change actually

takes place. In this article, we argue that a more realistic description of change is more likely when

using an approach which neither assumes that the change point for a school is known nor that

schools change synchronously. We have also explained how the evaluation of an intervention will

fail should synchronous change be blindly presumed.
Other methods have been proposed in the past for determining the timing of important events.

For example, if the timings of critical events (such as onset of drug use by minors in a particular

urban community) are observed for all or most units, and we wish to estimate the time of onset

for the collection of units (in order to sharpen interventions), survival analysis may be helpful in

determining average time of onset, recividism, recovery relapse, reoccurrence, etc. Willet and Singer

(1995) provided forceful arguments for considering such methods in educational modeling. However,

survival analysis requires that the change event is itself observed for some of the units. If event

occurrence is unobservable, as is the hallmark of our example above, both the timing (when) and

the detectability (whether) of change must be inferred from the course of some observable marker

of the unobserved process. In such situations, 7r', the posterior distribution of the joint-points, is

particularly relevant.
We note briefly several avenues for future research in school effectiveness and accountability

using the multilevel random join point model. To be an even more useful instrument for detecting

and explaining change in educational processes, this model can easily be extended to accommodate

the study of school readiness variables (covariates, e.g., teacher and principal turnover), in order to

investigate their roles on the timing and the outcome of academic intervention. There is however a

static quality to the models treated here that is unsatisfactory. It should also be clear that our brief

review is limited to the non-sequential change point problem and ignores, for reasons of scope and

space, the significant research on monitoring sequential processes for changes (e.g., Smith, 1975).

Finally, we also expect more work on detecting structural shifts in higher dimensional situations

(Moen, Salazar, and Broemeling, 1985).
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